We call them all by the general name of practical instances. Now there are two defects in practice, and as many divisions of important instances. Practice is either deceptive or too laborious. It is generally deceptive (especially after a diligent examination of natures), on account of the power and actions of bodies being ill defined and determined. Now the powers and actions of bodies are defined and determined either by space or by time, or by the quantity at a given period, or by the predominance of energy; and if these four circumstances be not well and diligently considered, the sciences may indeed be beautiful in theory, but are of no effect in practice. We call the four instances referred to this class, mathematical instances and instances of measure.
Practice is laborious either from the multitude of instruments, or the bulk of matter and substances requisite for any given work. Those instances, therefore, are valuable, which either direct practice to that which is of most consequence to mankind, or lessen the number of instruments or of matter to be worked upon. We assign to the three instances relating to this class, the common name of propitious or benevolent instances. We will now separately discuss these seven instances, and conclude with them that part of our work which relates to the prerogative or illustrious instances.
XLV. In the twenty-first rank of prerogative instances we will place the instances of the rod or rule, which we are also wont to call the instances of completion or non ultrà. For the powers and motions of bodies do not act and take effect through indefinite and accidental, but through limited and certain spaces; and it is of great importance to practice that these should be understood and noted in every nature which is investigated, not only to prevent deception, but to render practice more extensive and efficient. For it is sometimes possible to extend these powers, and bring the distance, as it were, nearer, as in the example of telescopes.
Many powers act and take effect only by actual touch, as in the percussion of bodies, where the one does not remove the other, unless the impelling touch the impelled body. External applications in medicine, as ointment and plasters, do not exercise their efficacy except when in contact with the body. Lastly, the objects of touch and taste only strike those senses when in contact with their organs.
Other powers act at a distance, though it be very small, of which but few have as yet been noted, although there be more than men suspect; this happens (to take everyday instances) when amber or jet attracts straws, bubbles dissolve bubbles, some purgative medicines draw humors from above, and the like. The magnetic power by which iron and the magnet, or two magnets, are attracted together, acts within a definite and narrow sphere, but if there be any magnetic power emanating from the earth a little below its surface, and affecting the needle in its polarity, it must act at a great distance.
Again, if there be any magnetic force which acts by sympathy between the globe of the earth and heavy bodies, or between that of the moon and the waters of the sea (as seems most probable from the particular floods and ebbs which occur twice in the month), or between the starry sphere and the planets, by which they are summoned and raised to their apogees, these must all operate at very great distances.
Again, some conflagrations and the kindling of flames take place at very considerable distances with particular substances, as they report of the naphtha of Babylon. Heat, too, insinuates itself at wide distances, as does also cold, so that the masses of ice which are broken off and float upon the Northern Ocean, and are borne through the Atlantic to the coast of Canada, become perceptible by the inhabitants, and strike them with cold from a distance. Perfumes also (though here there appears to be always some corporeal emission) act at remarkable distances, as is experienced by persons sailing by the coast of Florida, or parts of Spain, where there are whole woods of lemons, oranges, and other odoriferous plants, or rosemary and marjoram bushes, and the like. Lastly, the rays of light and the impressions of sound act at extensive distances.
Yet all these powers, whether acting at a small or great distance, certainly act within definite distances, which are well ascertained by nature, so that there is a limit depending either on the mass or quantity of the bodies, the vigor or faintness of the powers, or the favorable or impeding nature of the medium, all of which should be taken into account and observed. We must also note the boundaries of violent motions, such as missiles, projectiles, wheels and the like, since they are also manifestly confined to certain limits.
Some motions and virtues are to be found of a directly contrary nature to these, which act in contact but not at a distance; namely, such as operate at a distance and not in contact, and again act with less force at a less distance, and the reverse. Sight, for instance, is not easily effective in contact, but requires a medium and distance; although I remember having heard from a person deserving of credit, that in being cured of a cataract (which was done by putting a small silver needle within the first coat of the eye, to remove the thin pellicle of the cataract, and force it into a corner of the eye), he had distinctly seen the needle moving across the pupil. Still, though this may be true, it is clear that large bodies cannot be seen well or distinctly, unless at the vertex of a cone, where the rays from the object meet at some distance from the eye. In old persons the eye sees better if the object be moved a little further, and not nearer. Again, it is certain that in projectiles the impact is not so violent at too short a distance as a little afterward. Such are the observations to be made on the measure of motions as regards distance.
There is another measure of motion in space which must not be passed over, not relating to progressive but spherical motion—that is, the expansion of bodies into a greater, or their contraction into a lesser sphere. For in our measure of this motion we must inquire what degree of compression or extension bodies easily and readily admit of, according to their nature, and at what point they begin to resist it, so as at last to bear it no further—as when an inflated bladder is compressed, it allows a certain compression of the air, but if this be increased, the air does not suffer it, and the bladder is burst.
We have proved this by a more delicate experiment. We took a metal bell, of a light and thin sort, such as is used for salt-cellars, and immersed it in a basin of water, so as to carry the air contained in its interior down with it to the bottom of the basin. We had first, however, placed a small globe at the bottom of the basin, over which we placed the bell. The result was, that if the globe were small compared with the interior of the bell, the air would contract itself, and be compressed without being forced out, but if it were too large for the air readily to yield to it, the latter became impatient of the pressure, raised the bell partly up, and ascended in bubbles.
To prove, also, the extension (as well as the compression) which air admits of, we adopted the following method:—We took a glass egg, with a small hole at one end; we drew out the air by violent suction at this hole, and then closed the hole with the finger, immersed the egg in water, and then removed the finger. The air being constrained by the effort made in suction, and dilated beyond its natural state, and therefore striving to recover and contract itself (so that if the egg had not been immersed in water, it would have drawn in the air with a hissing sound), now drew in a sufficient quantity of water to allow the air to recover its former dimensions.
It is well ascertained that rare bodies (such as air) admit of considerable contraction, as has been before observed; but tangible bodies (such as water) admit of it much less readily, and to a less extent. We investigated the latter point by the following experiment:
We had a leaden globe made, capable of containing about two pints, wine measure, and of tolerable thickness, so as to support considerable pressure. We poured water into it through an aperture, which we afterward closed with melted lead, as soon as the globe was filled with water, so that the whole became perfectly solid.
1 comment