Grottoes and subterraneous caves are of great use in keeping off the effects of the sun, and the predatory action of air, and in the north of Germany are used for granaries. The depositing of bodies at the bottom of water may be also mentioned here; and I remember having heard of some bottles of wine being let down into a deep well in order to cool them, but left there by chance, carelessness, and forgetfulness for several years, and then taken out; by which means the wine not only escaped becoming flat or dead, but was much more excellent in flavor, arising (as it appears) from a more complete mixture of its parts. But if the case require that bodies should be sunk to the bottom of water, as in rivers or the sea, and yet should not touch the water, nor be inclosed in sealed vessels, but surrounded only by air, it would be right to use that vessel which has been sometimes employed under water above ships that have sunk, in order to enable the divers to remain below and breathe occasionally by turns. It was of the following nature: A hollow tub of metal was formed, and sunk so as to have its bottom parallel with the surface of the water; it thus carried down with it to the bottom of the sea all the air contained in the tub. It stood upon three feet (like a tripod), being of rather less height than a man, so that, when the diver was in want of breath, he could put his head into the hollow of the tub, breathe, and then continue his work. We hear that some sort of boat or vessel has now been invented, capable of carrying men some distance under water. Any bodies, however, can easily be suspended under some such vessel as we have mentioned, which has occasioned our remarks upon the experiment.
Another advantage of the careful and hermetical closing of bodies is this—not only the admission of external air is prevented (of which we have treated), but the spirit of bodies also is prevented from making its escape, which is an internal operation. For any one operating on natural bodies must be certain as to their quantity, and that nothing has evaporated or escaped, since profound alterations take place in bodies, when art prevents the loss or escape of any portion, while nature prevents their annihilation. With regard to this circumstance, a false idea has prevailed (which if true would make us despair of preserving quantity without diminution), namely, that the spirit of bodies, and air when rarefied by a great degree of heat, cannot be so kept in by being inclosed in any vessel as not to escape by the small pores. Men are led into this idea by the common experiments of a cup inverted over water, with a candle or piece of lighted paper in it, by which the water is drawn up, and of those cups which, when heated, draw up the flesh. For they think that in each experiment the rarefied air escapes, and that its quantity is therefore diminished, by which means the water or flesh rises by the motion of connection. This is, however, most incorrect. For the air is not diminished in quantity, but contracted in dimensions, nor does this motion of the rising of the water begin till the flame is extinguished, or the air cooled, so that physicians place cold sponges, moistened with water, on the cups, in order to increase their attraction. There is, therefore, no reason why men should fear much from the ready escape of air: for although it be true that the most solid bodies have their pores, yet neither air, nor spirit, readily suffers itself to be rarefied to such an extreme degree; just as water will not escape by a small chink.
2. With regard to the second of the seven above-mentioned methods, we must especially observe, that compression and similar violence have a most powerful effect either in producing locomotion, and other motions of the same nature, as may be observed in engines and projectiles, or in destroying the organic body, and those qualities, which consist entirely in motion (for all life, and every description of flame and ignition are destroyed by compression, which also injures and deranges every machine); or in destroying those qualities which consist in position and a coarse difference of parts, as in colors; for the color of a flower when whole, differs from that it presents when bruised, and the same may be observed of whole and powdered amber; or in tastes, for the taste of a pear before it is ripe, and of the same pear when bruised and softened, is different, since it becomes perceptibly more sweet. But such violence is of little avail in the more noble transformations and changes of homogeneous bodies, for they do not, by such means, acquire any constantly and permanently new state, but one that is transitory, and always struggling to return to its former habit and freedom. It would not, however, be useless to make some more diligent experiments with regard to this; whether, for instance, the condensation of a perfectly homogeneous body (such as air, water, oil, and the like) or their rarefaction, when effected by violence, can become permanent, fixed, and, as it were, so changed, as to become a nature. This might at first be tried by simple perseverance, and then by means of helps and harmonies. It might readily have been attempted (if we had but thought of it), when we condensed water (as was mentioned above), by hammering and compression, until it burst out. For we ought to have left the flattened globe untouched for some days, and then to have drawn off the water, in order to try whether it would have immediately occupied the same dimensions as it did before the condensation. If it had not done so, either immediately, or soon afterward, the condensation would have appeared to have been rendered constant; if not, it would have appeared that a restitution took place, and that the condensation had been transitory. Something of the same kind might have been tried with the glass eggs; the egg should have been sealed up suddenly and firmly, after a complete exhaustion of the air, and should have been allowed to remain so for some days, and it might then have been tried whether, on opening the aperture, the air would be drawn in with a hissing noise, or whether as much water would be drawn into it when immersed, as would have been drawn into it at first, if it had not continued sealed. For it is probable (or, at least, worth making the experiment) that this might have happened, or might happen, because perseverance has a similar effect upon bodies which are a little less homogeneous. A stick bent together for some time does not rebound, which is not owing to any loss of quantity in the wood during the time, for the same would occur (after a larger time) in a plate of steel, which does not evaporate. If the experiment of simple perseverance should fail, the matter should not be given up, but other means should be employed. For it would be no small advantage, if bodies could be endued with fixed and constant natures by violence. Air could then be converted into water by condensation, with other similar effects; for man is more the master of violent motions than of any other means.
3. The third of our seven methods is referred to that great practical engine of nature, as well as of art, cold and heat. Here, man’s power limps, as it were, with one leg. For we possess the heat of fire, which is infinitely more powerful and intense than that of the sun (as it reaches us), and that of animals.
1 comment