Die Bewegung ist so der gedoppelte Prozeß und Werden des Ganzen, daß zugleich ein jedes das andere setzt und jedes darum auch beide als zwei Ansichten an ihm hat; sie zusammen machen dadurch das Ganze, daß sie sich selbst auflösen und zu seinen Momenten machen.
Im mathematischen Erkennen ist die Einsicht ein für die Sache äußerliches Tun; es folgt daraus, daß die wahre Sache dadurch verändert wird. Das Mittel, Konstruktion und Beweis, enthält daher wohl wahre Sätze; aber ebensosehr muß gesagt werden, daß der Inhalt falsch ist. Das Dreieck wird in dem obigen Beispiele zerrissen und seine Teile zu anderen Figuren, die die Konstruktion an ihm entstehen läßt, geschlagen. Erst am Ende wird das Dreieck wiederhergestellt, um das es eigentlich zu tun ist, das im Fortgange aus den Augen verloren wurde und nur in Stücken, die anderen Ganzen angehörten, vorkam. – Hier sehen wir also auch die Negativität des Inhalts eintreten, welche eine Falschheit desselben ebensogut genannt werden müßte als in der Bewegung des Begriffs das Verschwinden der festgemeinten Gedanken.
Die eigentliche Mangelhaftigkeit dieses Erkennens aber betrifft sowohl das Erkennen selbst als seinen Stoff überhaupt. – Was das Erkennen betrifft, so wird fürs erste die Notwendigkeit der Konstruktion nicht eingesehen. Sie geht nicht aus dem Begriffe des Theorems hervor, sondern wird geboten, und man hat dieser Vorschrift, gerade diese Linien, deren unendlich andere gezogen werden könnten, zu ziehen, blindlings zu gehorchen, ohne etwas weiter zu wissen, als den guten Glauben zu haben, daß dies zur Führung des[43] Beweises zweckmäßig sein werde. Hintennach zeigt sich denn auch diese Zweckmäßigkeit, die deswegen nur eine äußerliche ist, weil sie sich erst hintennach beim Beweise zeigt. – Ebenso geht dieser einen Weg, der irgendwo anfängt, man weiß noch nicht in welcher Beziehung auf das Resultat, das herauskommen soll. Sein Fortgang nimmt diese Bestimmungen und Beziehungen auf und läßt andere liegen, ohne daß man unmittelbar einsähe, nach welcher Notwendigkeit; ein äußerer Zweck regiert diese Bewegung.
Die Evidenz dieses mangelhaften Erkennens, auf welche die Mathematik stolz ist und womit sie sich auch gegen die Philosophie brüstet, beruht allein auf der Armut ihres Zwecks und der Mangelhaftigkeit ihres Stoffs und ist darum von einer Art, die die Philosophie verschmähen muß. – Ihr Zweck oder Begriff ist die Größe. Dies ist gerade das unwesentliche, begrifflose Verhältnis. Die Bewegung des Wissens geht darum auf der Oberfläche vor, berührt nicht die Sache selbst, nicht das Wesen oder den Begriff und ist deswegen kein Begreifen. – Der Stoff, über den die Mathematik den erfreulichen Schatz von Wahrheiten gewährt, ist der Raum und das Eins. Der Raum ist das Dasein, worein der Begriff seine Unterschiede einschreibt als in ein leeres, totes Element, worin sie ebenso unbewegt und leblos sind. Das Wirkliche ist nicht ein Räumliches, wie es in der Mathematik betrachtet wird; mit solcher Unwirklichkeit, als die Dinge der Mathematik sind, gibt sich weder das konkrete sinnliche Anschauen noch die Philosophie ab. In solchem unwirklichen Elemente gibt es denn auch nur unwirkliches Wahres, d.h. fixierte, tote Sätze; bei jedem derselben kann aufgehört werden; der folgende fängt für sich von neuem an, ohne daß der erste sich selbst zum ändern fortbewegte und ohne daß auf diese Weise ein notwendiger Zusammenhang durch die Natur der Sache selbst entstünde. – Auch läuft um jenes Prinzips und Elements willen – und hierin besteht das Formelle der mathematischen Evidenz – das[44] Wissen an der Linie der Gleichheit fort. Denn das Tote, weil es sich nicht selbst bewegt, kommt nicht zu Unterschieden des Wesens, nicht zur wesentlichen Entgegensetzung oder Ungleichheit, daher nicht zum Übergange des Entgegengesetzten in das Entgegengesetzte, nicht zur qualitativen, immanenten, nicht zur Selbstbewegung. Denn es ist die Größe, der unwesentliche Unterschied, den die Mathematik allein betrachtet. Daß es der Begriff ist, der den Raum in seine Dimensionen entzweit und die Verbindungen derselben und in denselben bestimmt, davon abstrahiert sie; sie betrachtet z.B. nicht das Verhältnis der Linie zur Fläche; und wo sie den Durchmesser des Kreises mit der Peripherie vergleicht, stößt sie auf die Inkommensurabilität derselben, d.h. ein Verhältnis des Begriffs, ein Unendliches, das ihrer Bestimmung entflieht.
Die immanente, sogenannte reine Mathematik stellt auch nicht die Zeit als Zeit dem Räume gegenüber, als den zweiten Stoff ihrer Betrachtung. Die angewandte handelt wohl von ihr, wie von der Bewegung, auch sonst anderen wirklichen Dingen; sie nimmt aber die synthetischen, d.h. Sätze ihrer Verhältnisse, die durch ihren Begriff bestimmt sind, aus der Erfahrung auf und wendet nur auf diese Voraussetzungen ihre Formeln an. Daß die sogenannten Beweise solcher Sätze, als der vom Gleichgewichte des Hebels, dem Verhältnisse des Raums und der Zeit in der Bewegung des Fallens usf., welche sie häufig gibt, für Beweise gegeben und angenommen werden, ist selbst nur ein Beweis, wie groß das Bedürfnis des Beweisens für das Erkennen ist, weil es, wo es nicht mehr hat, auch den leeren Schein desselben achtet und eine Zufriedenheit dadurch gewinnt. Eine Kritik jener Beweise würde ebenso merkwürdig als belehrend sein, um die Mathematik teils von diesem falschen Putze zu reinigen, teils ihre Grenze zu zeigen und daraus die Notwendigkeit eines anderen Wissens. – Was die Zeit betrifft, von der man meinen sollte, daß sie, zum Gegenstücke gegen den Raum, den Stoff des ändern Teils der reinen Mathematik[45] ausmachen würde, so ist sie der daseiende Begriff selbst. Das Prinzip der Größe, des begrifflosen Unterschiedes, und das Prinzip der Gleichheit, der abstrakten unlebendigen Einheit, vermag es nicht, sich mit jener reinen Unruhe des Lebens und absoluten Unterscheidung zu befassen.
1 comment