It was small, and Phil Evans found his range of view was much limited.
"Break the glass," said Prudent, "and perhaps you will be able to see better."
Phil Evans gave it a sharp knock with the handle of his bowie-knife. It gave back a silvery sound, but it did not break.
Another and more violent blow. The same result.
"It is unbreakable glass!" said Evans.
It appeared as though the pane was made of glass toughened on the Siemens system—as after several blows it remained intact.
The light had now increased, and Phil Evans could see for some distance within the radius allowed by the frame.
"What do you see?" asked Uncle Prudent.
"Nothing."
"What? Not any trees?"
"No."
"Not even the top branches?"
"No."
"Then we are not in the clearing?"
"Neither in the clearing nor in the park."
"Don't you see any roofs of houses or monuments?" said Prudent, whose disappointment and anger were increasing rapidly.
"No."
"What! Not a flagstaff, nor a church tower, nor a chimney?"
"Nothing but space."
As he uttered the words the door opened. A man appeared on the threshold. It was Robur.
"Honorable balloonists" he said, in a serious voice, "you are now free to go and come as you like."
"Free!" exclaimed Uncle Prudent.
"Yes—within the limits of the "Albatross!"
Uncle Prudent and Phil Evans rushed out of their prison. And what did they see?
Four thousand feet below them the face of a country they sought in vain to recognize.
Chapter VII
ON BOARD THE ALBATROSS
"When will man cease to crawl in the depths to live in the azure and quiet of the sky?"
To this question of Camille Flammarion's the answer is easy. It will be when the progress of mechanics has enabled us to solve the problem of aviation. And in a few years—as we can foresee—a more practical utilization of electricity will do much towards that solution.
In 1783, before the Montgolfier brothers had built their fire-balloon, and Charles, the physician, had devised his first aerostat, a few adventurous spirits had dreamt of the conquest of space by mechanical means. The first inventors did not think of apparatus lighter than air, for that the science of their time did not allow them to imagine. It was to contrivances heavier than air, to flying machines in imitation of the birds, that they trusted to realize aerial locomotion.
This was exactly what had been done by that madman Icarus, the son of Daedalus, whose wings, fixed together with wax, had melted as they approached the sun.
But without going back to mythological times, without dwelling on Archytas of Tarentum, we find, in the works of Dante of Perugia, of Leonardo da Vinci and Guidotti, the idea of machines made to move through the air. Two centuries and a half afterwards inventors began to multiply. In 1742 the Marquis de Bacqueville designed a system of wings, tried it over the Seine, and fell and broke his arm. In 1768 Paucton conceived the idea of an apparatus with two screws, suspensive and propulsive. In 1781 Meerwein, the architect of the Prince of Baden, built an orthopteric machine, and protested against the tendency of the aerostats which had just been invented. In 1784 Launoy and Bienvenu had maneuvered a helicopter worked by springs. In 1808 there were the attempts at flight by the Austrian Jacques Degen. In 1810 came the pamphlet by Denian of Nantes, in which the principles of "heavier than air" are laid down. From 1811 to 1840 came the inventions and researches of Derblinger, Vigual, Sarti, Dubochet, and Cagniard de Latour. In 1842 we have the Englishman Henson, with his system of inclined planes and screws worked by steam. In 1845 came Cossus and his ascensional screws. In 1847 came Camille Vert and his helicopter made of birds' wings. In 1852 came Letur with his system of guidable parachutes, whose trial cost him his life; and in the same year came Michel Loup with his plan of gliding through the air on four revolving wings. In 1853 came Béléguic and his aeroplane with the traction screws, Vaussin-Chardannes with his guidable kite, and George Cauley with his flying machines driven by gas. From 1854 to 1863 appeared Joseph Pline with several patents for aerial systems. Bréant, Carlingford, Le Bris, Du Temple, Bright, whose ascensional screws were left-handed; Smythies, Panafieu, Crosnier, &c. At length, in 1863, thanks to the efforts of Nadar, a society of "heavier than air" was founded in Paris. There the inventors could experiment with the machines, of which many were patented. Ponton d'Amécourt and his steam helicopter, La Landelle and his system of combining screws with inclined planes and parachutes, Louvrié and his aeroscape, Esterno and his mechanical bird, Groof and his apparatus with wings worked by levers. The impetus was given, inventors invented, calculators calculated all that could render aerial locomotion practicable. Bourcart, Le Bris, Kaufmann, Smyth, Stringfellow, Prigent, Danjard, Pomés and De la Pauze, Moy, Pénaud, Jobert, Haureau de Villeneuve, Achenbach, Garapon, Duchesne, Danduran, Pariesel, Dieuaide, Melkiseff, Forlanini, Bearey, Tatin, Dandrieux, Edison, some with wings or screws, others with inclined planes, imagined, created, constructed, perfected, their flying machines, ready to do their work, once there came to be applied to thereby some inventor a motor of adequate power and excessive lightness.
This list may be a little long, but that will be forgiven, for it is necessary to give the various steps in the ladder of aerial locomotion, on the top of which appeared Robur the Conqueror.
1 comment